Daftar Materi » » Menafsirkan Nilai Optimum dalam Program Linier

Menafsirkan Nilai Optimum dalam Program Linier

Posted by . on Sabtu, 28 Oktober 2017

Masalah dimulai dari soal cerita dan diakhiri dengan mendapatkan suatu nilai optimum fungsi objektif / fungsi sasaran. Fungsi objektif ini dapat berbentuk funsi laba, pendapatan, biaya dan sebagainya. Sehingga untuk menyelesaikan program linier lengkap, hendaknya mengikuti langkah-langkah sebagai berikut :

(1) Menyusun model matematika yang terdiri dari kendala (sistem pertidaksamaan linier) dan fungsi sasaran
(2) Melukis grafik daerah penyelesaian dari sistem pertidaksamaan linier tersebut serta menentukan titik-titik ujinya
(3) Menentukan nilai optimum suatu fungsi sasaran dengan cara mensubstitusikan titik-titik uji ke dalam fungsi sasaran

Untuk lebih jelasnya akan diuraikan pada contoh soal berikut ini

01. Untuk memproduksi sepeda jenis A dengan harga jual Rp.600.000 suatu perusahaan membutuhkan biaya Rp. 200.000 dan waktu 20 jam. Sedangkan sepeda jenis B dengan harga jual Rp. 800.000 membutuhkan biaya Rp. 100.000 dengan waktu 30 jam. Jika dana yang tersedia Rp. 1.200.000 dan waktu kerja 240 jam per bulan, maka tentukanlah hasil penjualan maksimum yang diperoleh tiap bulan

Jawab
Misalkan
x = banyaknya sepeda jenis A
y = banyaknya sepeda jenis B
maka dapat disusun kendala biaya dan waktu produksi sebagai berikut:
200000x + 100000y ≤ 1200000
20x + 30y ≤ 240
x ≥ 0
y ≥ 0
Jika disederhanakan menjadi :
2x + y ≤ 12
2x + 3y ≤ 24
x ≥ 0
y ≥ 0
Fungsi penjualan : f(x, y) = 600000x + 800000y
Selanjutnya akan dilukis grafik daerah penyelesaian sistem pertidaksamaan di atas
 
Titik A koordinatnya adalah A(0, 8)
Titik C koordinatnya adalah C(6, 0)
Sedangkan titik B merupakan perpotongan garis g dan h, diperoleh :
karena 2x + y = 12 maka 2x + 6 = 12, sehingga 2x = 6, jadi  x = 3
Jadi koordinat titik B adalah B(3, 6)
Selanjutnya titik-titik tersebut disubstitusikan ke dalam fungsi optimum yakni f(x,y) = 600000x + 800000y, sehingga diperoleh :
A(0, 8) → f(A) = 600000(0) + 800000(8) = 6.400.000
B(6, 2) → f(B) = 600000(6) + 800000(2) = 5.200.000
C(3, 6) → f(C) = 600000(3) + 800000(6) = 6.600.000
Jadi hasil penjualan maksimum yang diperoleh tiap bulan adalah Rp. 6.600.000

02. Seorang anak diharuskan memakan dua jenis tablet tiap hari. Tablet pertama mengandung 2 unit vitamin A dan 2 unit vitamin B, sedangkan tablet kedua mengandung 3 unit vitamin A dan 1 unit vitamin B. Dalam satu hari anak itu memerlukan paling sedikit 12 unit vitamin A dan 8 unit vitamin B. Jika harga tablet pertama Rp. 500 perbutir dan tablet kedua Rp. 1.000 perbutir maka agar pengeluaran minimum banyak tablet pertama yang harus dibeli adalah …

Jawab
Misalkan x = banyaknya tablet jenis pertama
y = banyaknya tablet jenis kedua
maka dapat disusun kendala kebutuhan vitamin A dan vitamin B sebagai berikut:
Dari tabel di atas dapat disusun kendala, yakni :
2x + 3y ≥ 12
2x + y ≥ 8
x ≥ 0
y ≥ 0
Fungsi pengeluaran f(x, y) = 500x + 1000y
Selanjutnya akan dilukis grafik daerah penyelesaian sistem pertidaksamaan di atas

Titik A koordinatnya adalah A(0, 8)
Titik C koordinatnya adalah C(6, 0)
Sedangkan titik B merupakan perpotongan garis g dan h, diperoleh :
karena 2x + y = 8 maka 2x + 2 = 8, sehingga 2x = 6 , x =3
Jadi koordinat titik B adalah B(3, 2)
Selanjutnya titik-titik tersebut disubstitusikan ke dalam fungsi optimum yakni f(x,y) = 500x + 1000y, sehingga diperoleh :
A(0, 8) → f(A) = 500(0) + 1000(8) = 8.000
B(3, 2) → f(B) = 500(3) + 1000(2) = 3.500
C(6, 0) → f(C) = 500(6) + 1000(0) = 3.000
Jadi besarnya pengeluaran minimum Rp. 3.000 didapat jika dibeli 6 tablet pertama

03. Seorang pedagang minuman menjual dua jenis minuman ringan pada suatu tempat yang dapat menampung 500 botol minuman. Harga beli minuman jenis A dan jenis B masing-masing Rp. 2000 dan Rp 4000 per botol. Jika ia memiliki modal Rp. 1.600.000 serta akan memperoleh laba perbuah Rp. 800 untuk minuman jenis A dan Rp. 600 untuk minuman jenis B, maka berapakah banyaknya minuman minuman jenis A dan B agar diperoleh laba maksimum ?

Jawab
Misalkan
x = banyaknya minuman jenis A
y = banyaknya minuman jenis B
maka dapat disusun kendala modal dan kapasitas kios sebagai berikut:
x + y ≤ 500
2000x + 4000y ≤ 1.600.000
x ≥ 0
y ≥ 0
Jika disederhanakan menjadi :
x + y ≤ 500
x + 2y ≤ 800
x ≥ 0
y ≥ 0
Fungsi laba : f(x, y) = 800x + 600y
Selanjutnya akan dilukis grafik daerah penyelesaian sistem pertidaksamaan di atas
Titik A koordinatnya adalah A(0, 400)
Titik C koordinatnya adalah C(500, 0)
Sedangkan titik B merupakan perpotongan garis g dan h, diperoleh :
karena x + y = 500 maka x + 300 = 500, sehingga x = 200
Jadi koordinat titik B adalah B(200, 300)
Selanjutnya titik-titik tersebut disubstitusikan ke dalam fungsi optimum yakni f(x,y) = 800x + 600y, sehingga diperoleh :
A(0, 400)     → f(A) = 800(0) + 600(400) = 240.000
B(200, 300) → f(B) = 800(200) + 600(300) = 360.000
C(500, 0)     → f(C) = 800(500) + 600(0) = 400.000
Jadi keuntungan maksimum yakni sebesar Rp. 400.000 diperoleh jika dijual minuman jenis A saja sebanyak 500 botol


Thanks for reading & sharing .

Previous
« Prev Post